Tailoring optical and photocatalytic properties of sulfur-doped boron nitride quantum dots via ligand functionalization

Author:

Cui PengORCID,Wu Qiulan

Abstract

Abstract Boron nitride quantum dots (BNQDs) have emerged as promising photocatalysts due to their excellent physicochemical properties. This study investigates strategies to enhance the photocatalytic performance of BNQDs through sulfur-doping (S-BNQDs) and edge-functionalization with ligands (urea, thiourea, p-phenyl-enediamine (PPD)). To analyze the geometry, electronic structure, optical absorption, charge transfer, and photocatalytic parameters of pristine and functionalized S-BNQDs, we performed density functional theory calculations. The results showed that S-doping and ligand functionalization tune the bandgap, band energies, and introduce mid-gap states to facilitate light absorption, charge separation, and optimized energetics for photocatalytic redox reactions. Notably, the PPD ligand induced the most substantial bandgap narrowing and absorption edge red-shift by over 1 electron volt (eV) compared to pristine S-BNQD, significantly expanding light harvesting. Additionally, urea and PPD functionalization increased the charge transfer length by up to 2.5 times, effectively reducing recombination. On the other hand, thiourea functionalization yielded the most favorable electron injection energetics. The energy conversion efficiency followed the order: PPD (15.0%) > thiourea (12.0%) > urea (11.0%) > pristine (10.0%). Moreover, urea functionalization maximized the first-order hyperpolarizability, enhancing light absorption. These findings provide valuable insights into tailoring S-BNQDs through strategic doping and functionalization to develop highly efficient, customized photocatalysts for sustainable applications.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3