Abstract
Abstract
Geometric phase analysis (GPA) is a powerful tool to investigate the deformation in nanoscale measurement, especially in dealing with high-resolution transmission electron microscopy images. The traditional GPA method using the fast Fourier transform is built on the relationship between the displacement and the phase difference. In this paper, a nano-grid method based on real-space lattice image processing was firstly proposed to enable the measurement of nanoscale interface flatness, and the thickness of different components. Then, a hybrid method for lattice image reconstruction and deformation analysis was developed. The hybrid method enables simultaneous real-space and frequency-domain processing, thus, compensating for the shortcomings of the GPA method when measuring samples with large deformations or containing cracks while retaining its measurement accuracy.
Funder
the Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Beijing Natural Science Foundation
National Science and Technology Major Project
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献