Ligand-mediated CsPbBr x I3− x /SiO2 quantum dots for red, stable and low-threshold amplify spontaneous emission

Author:

Hu Jian,Zhang Sijian,Huang Shuo,Zhang JunxiORCID,Lyu Mei,Lu Hongbo,Zhu JunORCID

Abstract

Abstract The red-emitting perovskite material has received widespread attention as a long-wavelength optical gain media. But the easy phase change in the air limits its practical application. Herein, red CsPbBr x I3−x /SiO2 quantum dots (QDs) are prepared by a ligand-mediated hot injection method in which 3-aminopropyl-triethoxysilane (APTES) is used instead of the usual oleylamine (OAm) ligand. Through the hydrolysis of amino groups, a thin silicon layer is formed on the QD surface, improving the stability and without causing the aggregation of QDs. We find that the ratio of I/Br and the size of QDs can be tuned by adjusting the APTES amount. Moreover, this ligand-mediated synthesis effectively passivates the surface defects, so the photoluminescence quantum yield is remarkably improved, and the carrier lifetime is prolonged. The amplified spontaneous emission is achieved under 532 nm nanosecond laser excitation. Compared with the original CsPbBrI2-OAm QD films, the threshold of CsPbBr x I3−x /SiO2 QD films is reduced from 403.5 to 98.7 μJ cm−2, and the radiation stability is significantly enhanced. Therefore, this material shows great potential in the random laser field.

Funder

Research and Development Program of China

Natural Science Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3