Self-powered broadband photodetector based on a solution-processed p-NiO/n-CdS:Al heterojunction

Author:

K Chandra Sekhar ReddyORCID,Willars-Rodríguez F J,Ramirez Bon RafaelORCID

Abstract

Abstract Solution-processed photodetectors have emerged as the next generation of sensing technology owing to their ease of integration with electron devices and of tuning photodetector performance. Currently, novel self-powered photodetectors without an external power source, for use in sensing, imaging and communication, are in high demand. Herein, we successfully developed a self-powered photodetector based on a novel solution-processed p-NiO/n-CdS:Al heterojunction, which shows an excellent current rectification characteristic ratio of up to three orders in the dark and distinctive photovoltaic behavior under light illumination. The complete solution synthesis route followed the development of CdS:Al thin films on ITO substrates by chemical bath deposition and NiO thin films by the sol-gel route. Optical absorption data revealed that NiO is more active in the UV region and CdS:Al has a majority of absorption in the visible region; so, upon light illumination, the effective separation of photogenerated carriers produces fast photodetection in the UV–visible region. The photoresponsivity values of the fabricated device were calculated to be 55 mA W−1 and 30 mA W−1 for UV and visible illumination, respectively. Also, the device has a fast rise and decay photoresponse speed at zero bias voltage, due to the self-driven photovoltaic effect which makes this heterojunction a self-powered device. This complete solution and new method of fabrication make it possible to combine different materials and flexible substrates, enhancing its potential applications in photodetectors, optoelectronic devices and sensors.

Funder

Consejo Nacional de Ciencia y Tecnologia

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3