Abstract
Abstract
Solution-processed organic thin-film transistors (OTFTs) are regarded as the promising candidates for low-cost gas sensors due to their advantages of high throughput, large-area and sensitive to various gas analytes. Microstructure control of organic active layers in OTFTs is an effective route to improve the sensing performance. In this work, we report a simple method to modify the morphology of 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) thin films via doping gold nanorods (Au NRs) for enhancing the performance of the corresponding OTFT sensors for nitrogen dioxide (NO2) detection. With the optimized doping ratio of Au nanorods, the TIPS-pentacene OTFT snesors not only exhibit a 3-fold increase in mobility, but also obtain a high sensitivity of 70% to 18 ppm NO2 with a detection limit of 270 ppb. The microstructures and morphologies of the modified TIPS-pentacene thin film characterized by atomic force microscopy and field scanning electron microscope. The experimental results indicate that the proper addition of Au NRs could effectively regulate the grain size of TIPS-pentacene, and therein control the density of grain boundaries during the crystallization, which is essential for the high-performance gas sensors.
Funder
Foundation of National Natural Science Foundation of China
the National Key R&D Program of China
Program of Science and Technology of Sichuan Province
the Research Grants of the Hong Kong Special Administrative Region
City University of Hong Kong
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering