In-situ electrical conductance measurement of suspended ultra-narrow graphene nanoribbons observed via transmission electron microscopy

Author:

Liu ChunmengORCID,Zhang JiaqiORCID,Zhang XiaobinORCID,Muruganathan Manoharan,Mizuta Hiroshi,Oshima YoshifumiORCID

Abstract

Abstract Graphene nanoribbon is an attractive material for nano-electronic devices, as their electrical transport performance can be controlled by their edge structures. However, in most cases, the electrical transport has been investigated only for graphene nanoribbons fabricated on a substrate, which hinders the appearance of intrinsic electrical transport due to screening effects. In this study, we developed special devices based on silicon chips for transmission electron microscopy to observe a monolayer graphene nanoribbon suspended between two gold electrodes. Moreover, with the development of an in-situ transmission electron microscopy holder, the current–voltage characteristics were achieved simultaneously with observing and modifying the structure. We found that the current–voltage characteristics differed between 1.5 nm-wide graphene nanoribbons with armchair and zigzag edge structures. The energy gap of the zigzag edge was more than two-fold larger than that of the armchair edge and exhibited an abrupt jump above a critical bias voltage in the differential conductance curve. Thus, our in-situ transmission electron microscopy method is promising for elucidating the structural dependence of electrical conduction in two-dimensional materials.

Funder

Iketani Science and Technology Foundation

Sasakawa Scientific Research Grant of The Japan Science Society

Izumi Science and Technology Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3