Ambipolar transport in Ni-catalyzed InGaAs nanowire field-effect transistors for near-infrared photodetection

Author:

Guo Yanan,Liu Dong,Miao Chengcheng,Sun Jiamin,Pang Zhiyong,Wang Peng,Xu Mingsheng,Han Ning,Yang Zai-XingORCID

Abstract

Abstract Weak n-type characteristics or poor p-type characteristics are limiting the applications of binary semiconductors based on ambipolar field-effect transistors (FETs). In this work, a ternary alloy of In0.2Ga0.8As nanowires (NWs) is successfully prepared using a Ni catalyst during a typical solid-source chemical-vapor-deposition process to balance the weak n-type conduction behavior in ambipolar GaAs NWFETs and the poor p-type conduction behavior in ambipolar InAs NWFETs. The presence of ambipolar transport, contributed by a native oxide shell and the body defects of the prepared In0.2Ga0.8As NWs, is confirmed by the constructed back-gated NWFETs. As demonstrated by photoluminescence, the bandgap of the prepared In0.2Ga0.8As NWs is 1.28 eV, offering the promise of application in near-infrared (NIR) photodetection. Under 850 nm laser illumination, the fabricated ambipolar NWFETs show extremely low dark currents of 50 pA and 0.5 pA when positive and negative gate voltages are applied, respectively. All the results demonstrate that with careful design of the surface oxide layer and the body defects, NWs are suitable for use in next-generation optoelectronic devices.

Funder

Shandong Provincial Natural Science Foundation

Shandong University Youth Innovation Supporting Program

Shandong University Multidisciplinary Research and Innovation Team of Young Scholars

“Outstanding Youth Scholar and Qilu Young Scholar” programs of Shandong University

National Key R&D Program of China

National Natural Science Foundation of China

Taishan Scholars Program of Shandong Province

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3