Single-layered assembly of vanadium pentoxide nanowires on graphene for nanowire-based lithography technique

Author:

Fukui Akito,Aoki Yuki,Matsuyama Keigo,Ichimiya Hisashi,Nouchi RyoORCID,Takei Kuniharu,Ashida Atsushi,Yoshimura Takeshi,Fujimura Norifumi,Kiriya DaisukeORCID

Abstract

Abstract Graphene nanoribbon (GNR)-based materials are a promising device material because of their potential high carrier mobility and atomically thin structure. Various approaches have been reported for preparing the GNR-based materials, from bottom-up chemical synthetic procedures to top-down fabrication techniques using lithography of graphene. However, it is still difficult to prepare a large-scale GNR-based material. Here, we develop a procedure to prepare a large-scale GNR network using networked single-layer inorganic nanowires. Vanadium pentoxide (V2O5) nanowires were assembled on graphene with an interfacial layer of a cationic polymer via electrostatic interaction. A large-scale nanowire network can be prepared on graphene and is stable enough for applying an oxygen plasma. Using plasma etching, a networked graphene structure can be generated. Removing the nanowires results in a networked flat structure whose both surface morphology and Raman spectrum indicate a GNR networked structure. The field-effect device indicates the semiconducting character of the GNR networked structure. This work would be useful for fabricating a large-scale GNR-based material as a platform for GNR junctions for physics and electronic circuits.

Funder

Japan Society for the Promotion of Science London

Japan Science and Technology Agency

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3