Field angle dependent resonant dynamics of artificial spin ice lattices

Author:

Kuchibhotla MahathiORCID,Haldar ArabindaORCID,Adeyeye Adekunle OlusolaORCID

Abstract

Abstract Artificial spin ice structures which are networks of coupled nanomagnets arranged on different lattices that exhibit a number of interesting phenomena are promising for future information processing. We report reconfigurable microwave properties in artificial spin ice structures with three different lattice symmetries namely square, kagome, and triangle. Magnetization dynamics are systematically investigated using field angle dependent ferromagnetic resonance spectroscopy. Two distinct ferromagnetic resonance modes are observed in square spin ice structures in contrast with the three well-separated modes in kagome and triangular spin ice structures that are spatially localized at the center of the individual nanomagnets. A simple rotation of the sample placed in magnetic field results in the merging and splitting of the modes due to the different orientations of the nanomagnets with respect to the applied magnetic field. Magnetostatic interactions are found to shift the mode positions after comparing the microwave responses from the array of nanomagnets with control simulations with isolated nanomagnets. Moreover, the extent of the mode splitting has been studied by varying the thickness of the lattice structures. The results have potential implications for microwave filter-type applications which can be operated for a wide range of frequencies with ease of tunability.

Funder

DAE-YSRA, Board of Research in Nuclear Sciences

Royal Society and Wolfson Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Reference56 articles.

1. Magnetization dynamics of nanoscale magnetic materials: a perspective;Barman;J. Appl. Phys.,2020

2. Preface: Magnonics;Kruglyak;J. Phys. D: Appl. Phys.,2010

3. Direct visualization of memory effects in artificial spin ice;Gilbert;Phys. Rev. B,2015

4. Rewritable artificial magnetic charge ice;Bafe;Science (80-. ).,2016

5. spin–orbit torque–driven propagating spin waves;Fulara;Sci. Adv.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3