Abstract
Abstract
Over the last two decades, silicon nanowire field-effect transistors (SiNW-FETs) with prominent merits of high surface-to-volume ratio, excellent biocompatibility and mature fabrication with standard silicon technology, have been widely studied as ultrahigh sensitive biosensors for the detection of target biomolecules, such as proteins, nucleic acids, cells and viruses so on. Herein we present a comprehensive review of the fundamental aspects of SiNW-FET biosensors, involving the working principle and the device fabrication, surface functionalization, and system integration with fluid exchange and electrical detection. Futhermore, we emphatically discuss the electrical detection of cardiac-specific biomarkers related to acute myocardial infarction disease. SiNW-FET biosensors are being increasingly exploited as promising diagnostic devices, which provide high sensitivity, high integration density, high speed sampling, strong specificity, and real-time and label-free detection for simple and cheap clinical testing.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献