Pillar-structured 3D inlets fabricated by dose-modulated e-beam lithography and nanoimprinting for DNA analysis in passive, clogging-free, nanofluidic devices

Author:

Esmek Franziska MORCID,Erichlandwehr TimORCID,Brkovic Nico,Pranzner Nathalie P,Teuber Jeremy P,Fernandez-Cuesta IreneORCID

Abstract

Abstract We present the fabrication of three-dimensional inlets with gradually decreasing widths and depths and with nanopillars on the slope, all defined in just one lithography step. In addition, as an application, we show how these micro- and nanostructures can be used for micro- and nanofluidics and lab-on-a-chip devices to facilitate the flow and analyze single molecules of DNA. For the fabrication of 3D inlets in a single layer process, dose-modulated electron beam lithography was used, producing depths between 750 nm and 50 nm along a 30 μm long inlet, which is additionally structured with nanometer-scale pillars randomly distributed on top, as a result of incomplete exposure and underdevelopment of the resist. The fabrication conditions affect the slope of the inlet, the nanopillar density and coverage. The key parameters are the dose used for the electron beam exposure and the development conditions, like the developer’s dilution, stirring and development time. The 3D inlets with nanostructured pillars were integrated into fluidic devices, acting as a transition between micro and nanofluidic structures for pre-stretching and unfolding DNA molecules, avoiding the intrusion of folded molecules and clogging the analysis channel. After patterning these structures in silicon, they can be replicated in polymer by UV nanoimprinting. We show here how the inlets with pillars slow down the molecules before they enter the nanochannels, resulting in a 3-fold decrease in speed, which would translate to an improvement in the resolution for DNA optical mapping.

Funder

H2020 European Research Council

Dr. Hans Messer Stiftung Bad Soden Ts

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3