Abstract
Abstract
The adsorption and gas sensing properties of black arsenene (B-As) regarding sulfur hexafluoride (SF6) and its six decompositions (SOF2, SO2F2, SO2, H2S, HF, and CF4) are investigated using density functional theory combined with the nonequilibrium Green’s function. The sensitivity of B-As is evaluated by considering the most stable adsorption configuration, adsorption energy, work function, recovery time, local density of states, and charge transfer between the gas molecules and B-As. It is demonstrated that B-As is more sensitive to the SO2 molecule than to the other decompositions. Additionally, the adsorption strength can be manipulated by controlling the external electric field (E-field). The application of tensile biaxial strain results in more isotropic electrical conductance of B-As, and it can also effectively enhance the response toward SO2. For example, under a 1% equibiaxial tensile strain, a 132% response can be obtained along the zigzag direction. This work suggests the promising prospects of B-As-based gas sensors for detecting SO2 among SF6 decompositions.
Funder
the Environment and Conservation Fund
Research Grants Council of Hong Kong
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献