Cell spreading behaviors on hybrid nanopillar and nanohole arrays

Author:

Wu Xiaomin,Li Li,Wang Lu,Lei Zecheng,Yang Fan,Liu Ri,Wang Ying,Peng Kuiqing,Wang ZuobinORCID

Abstract

Abstract Although nanopillars (NPs) provide a promising tool for capturing tumor cells, the effect of mixing NPs with other nanopatterns on cell behavior remains to be further studied. In this paper, a method of fabricating silicon nanoscale topographies by combining laser interference lithography with metal assisted chemical etching was introduced to investigate the behaviors and pseudopodia of A549 cells on the topologies. It was found that cells had a limited manner in spreading with small cell areas on the silicon nanopillar (SiNP) arrays, but a good manner in spreading with large cell areas on the silicon nanohole (SiNH) arrays. When on the hybrid SiNP/SiNH arrays, cells had medium cell areas and they arranged orderly along the boundaries of SiNPs and SiNHs, as well as 80% of cells displayed a preference for SiNPs over SiNHs. Furthermore, the lamellipodia and filopodia are dominant in the hybrid SiNP/SiNH and SiNP arrays, respectively, both of them are dominant in the SiNH arrays. In addition, the atomic force acoustic microscopy was also employed to detect the subsurface features of samples. The results suggest that the hybrid SiNP/SiNH arrays have a targeted trap and elongation effect on cells. The findings provide a promising method in designing hybrid nanostructures for efficient tumor cell traps, as well as regulating the cell behaviors and pseudopodia.

Funder

EU H2020 Program

National Key R&D Program of China

Jilin Provincial Science and Technology Program

“111” Project of China

Changli Nano Biotechnology

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3