The role of Co2+ cation addition in enhancing the AC heat induction power of (CoxMn1–x)Fe2O4 superparamagnetic nanoparticles

Author:

Wang Jie,Kim Hyungsub,Seo HyeongJooORCID,Ota Satoshi,You Chun-YeolORCID,Takemura Yasushi,Bae SeongtaeORCID

Abstract

Abstract The physical role of magnetically semi-hard Co2+ cation addition in enhancing the AC heat induction temperature (T AC) or specific loss power (SLP) of solid (Co x Mn1−x )Fe2O4 superparamagnetic iron oxide nanoparticles (SPIONPs) was systematically investigated at the biologically safe and physiologically tolerable range of H AC (H AC,safe = 1.12 × 109 A m−1 s−1, f appl = 100 kHz, H appl = 140 Oe (11.2 A m−1)) to demonstrate which physical parameter would be the most critical and dominant in enhancing the T AC (SLP) of SPIONPs. According to the experimentally and theoretically analyzed results, it was clearly demonstrated that the enhancement of magnetic anisotropy (K u )-dependent AC magnetic softness including the Néel relaxation time constant τ N (≈τ eff , effective relaxation time constant), and its dependent out-of-phase magnetic susceptibility χ primarily caused by the Co2+ cation addition is the most dominant parameter to enhance the T AC (SLP). This clarified result strongly suggests that the development of new design and synthesis methods enabling to significantly enhance the K u by improving the crystalline anisotropy, shape anisotropy, stress (magnetoelastic) anisotropy, thermally-induced anisotropy, and exchange anisotropy is the most critical to enhance the T AC (SLP) of SPIONPs at the H AC,safe (particularly at the lower f appl < 120 kHz) for clinically safe magnetic nanoparticle hyperthermia.

Funder

National Research Foundation of Korea

Neo-Nanomedics Co. Ltd

SPARC Graduate Research Grant from the Office of the Vice President for Research

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3