Sunlight-driven CO2 utilization over two-dimensional Co-based nanosheets

Author:

Gao Linjie,Wang Haixiao,Wang Yachuan,Liu Bang,Zhang Weifeng,Li YaguangORCID

Abstract

Abstract Reverse water gas shift (RWGS) reaction is an intriguing strategy to realize carbon neutrality, however, the endothermic process usually needs high temperature that supplied by non-renewable fossil fuels, resulting in secondary energy and environmental issues. Photothermal catalysis are ideal substitutes for the conventional thermal catalysis, providing that high reaction efficiency is achievable. Two-dimensional (2D) materials are highly active as RWGS catalysts, however, their industrial application is restricted by the preparation cost. In this study, a series of 2D Co-based catalysts for photothermal RWGS reaction with tunable selectivity were prepared by self-assembly method based on cheap amylum, by integrating the 2D catalysts with our homemade photothermal device, sunlight driven efficient RWGS reaction was realized. The prepared 2D Co0.5Ce0.5O x exhibited a full selectivity toward CO (100%) and could be heated to 318 °C under 1 kW m−2 irradiation with the CO generation rate of 14.48 mmol g−1 h−1, pointing out a cheap and universal method to prepare 2D materials, and zero consumption CO generation from photothermal RWGS reaction.

Funder

National Nature Science Foundation of China

Natural Science Foundation of Hebei Province

Hebei Provincial Department of Science and Technology

Hebei Education Department

Interdisciplinary Research Program of Natural Science of Hebei University

Scientific Research Foundation of Hebei Agricultural University

Hebei University

Advanced Talents Incubation Program of Hebei University

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3