Abstract
Abstract
Optical artificial synapses possess several advantages, including high bandwidth, strong interference immunity, and ultra-fast signal transmission, overcoming the limitations of electrically stimulated synapses. Among various functional materials, 2D materials exhibit exceptional optical and electrical properties. By utilizing van der Waals heterostructures formed by these materials through rational design, synaptic devices can mimic the information perception ability of biological systems. This lays the foundation for low-energy artificial vision systems and neuromorphic computing. This study introduces an inhibitory artificial synapse based on photoelectric co-modulation of graphene/WSe2 van der Waals heterojunctions. By synergistically applying gate voltage and light pulses, we simulate memory and logic functions observed in the brain’s visual cortex. We achieve the construction of inhibitory synapses, enabling properties such as postsynaptic current response, short-term and long-term plasticity, and paired-pulse facilitation. Additionally, we accomplish the inverse recovery of device conductivity through separate gate voltage stimulation. Through bidirectional modulation of the artificial synaptic conductance, we construct an artificial hardware neural network that achieves 92.5% accuracy in recognizing handwritten digital images from the MNIST dataset. The network also has good recognition accuracy for handwritten digital images with different standard deviation Gaussian noise applied and other datasets. Furthermore, we successfully mimic the neural behavior of aversive learning for alcohol withdrawal in alcoholic patients using the device properties. The promising capabilities of artificial synapses constructed through electrical and optical synergistic modulation make them suitable for wearable electronics and artificial vision systems.
Funder
National Natura Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献