Abstract
Abstract
The suspended metallic nanostructures with tiny gaps have certain advantages in surface-enhanced Raman scattering (SERS) due to the coaction of the tiny metallic nanogaps and the substrate-decoupled electromagnetism resonant modes. In this study, we used the lithographic HSQ/PMMA electron-beam bilayer resist exposure combined with a deposition-induced nanogap-narrowing process to define elevated suspended metallic nanodimers with tiny gaps for surface-enhanced Raman spectroscopy detection. By adjusting the deposited metal thickness, the metallic dimers with sub-10 nm gaps can be reliably obtained. These dimers with tunable nanogaps successfully served as excellent SERS substrates, exhibiting remarkable high-sensitivity detection ability for crystal violet molecules. Systematic experiments and simulations were conducted to explain the origin of the improved SERS performance. The results showed that the 3D elevated suspended metallic dimers could achieve a higher SERS enhancement factor than the metallic dimers on HSQ pillars and a common Si substrate, demonstrating that this kind of suspended metallic dimer is a promising route for high-sensitive SERS detection and other plasmonic applications.
Funder
Guangdong Basic and Applied Basic Research Foundation
China Academy of Engineering Physics
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献