Gate‐all‐around nanowire vertical tunneling FETs by ferroelectric internal voltage amplification

Author:

Thoti NarasimhuluORCID,Li YimingORCID

Abstract

Abstract This work illustrates the most effective way of utilizing the ferroelectricity for tunneling field-effect transistors (TFETs). The ferroelectric (Hf0.5Zr0.5O2) in shunt with gate-dielectric is utilized as an optimized metal–ferroelectric–semiconductor (OMFS) option to improve the internal voltage (V int ) for ample utilization of polarization and electric fields of Hf0.5Zr0.5O2 across the tunneling region. The modeling of V int signifies 0.15–1.2 nm reduction in tunneling length (λ) than the nominal metal–ferroelectric–insulator–semiconductor (MFIS) option. Furthermore, the TFET geometry with the scaled-epitaxy region as vertical TFET (VTFET), strained Si0.6Ge0.4 as source, and gate-all-around nanowire options are used as an added advantage for further enhancement of TFET’s performance. As a result, the proposed design (OMFS-VTFET) achieves superior DC and RF performances than the MFIS option of TFET. The figure of merits in terms of DC characteristics in the proposed and optimized structure are of improved on-current (=0.23 mA μm−1), high on-to-off current ratio (=1011), steep subthreshold swing (=33.36 mV dec−1), and superior unity gain cut-off frequency (≥300 GHz). The design is revealed as energy-efficient with significant reduction of energy-efficiency in both logic and memory applications.

Funder

Ministry of Science and Technology, Taiwan

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Reference47 articles.

1. Low-voltage tunnel transistors for beyond CMOS logic;Seabaugh;Proc. IEEE,2010

2. Demonstration of improved transient response of inverters with steep slope strained Si NW TFETs by reduction of TAT with Pulsed I–V and NW Scaling;Knoll,2013

3. Novel SiGe/Si line tunneling TFET with high Ion at low VDD and constant SS;Blaeser,2015

4. A high-performance InAs/GaSb core–shell nanowire line-tunneling TFET: an atomistic mode-space NEGF study;Afzalian;IEEE J. Electron Devices Soc.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3