Abstract
Abstract
Semiconductor photocatalysis holds significant promise in addressing both environmental and energy challenges. However, a major hurdle in photocatalytic processes remains the efficient separation of photoinduced charge carriers. In this study, TiO2 nanorod arrays were employed by glancing angle deposition technique, onto which Ti3C2T
x
MXene was deposited through a spin-coating process. This hybrid approach aims to amplify the photocatalytic efficacy of TiO2 nanorod arrays. Through photocurrent efficiency characterization testing, an optimal loading of TiO2/Ti3C2T
x
composites is identified. Remarkably, this composite exhibits a 40% increase in photocurrent density in comparison to pristine TiO2. This enhancement is attributed to the exceptional electrical conductivity and expansive specific surface area inherent to Ti3C2T
x
MXene. These attributes facilitate swift transport of photoinduced electrons, consequently refining the separation and migration of electron–hole pairs. The synergistic TiO2/Ti3C2T
x
composite showcases its potential across various domains including photoelectrochemical water splitting and diverse photocatalytic devices. As such, this composite material stands as a novel and promising entity for advancing photocatalytic applications. This study can offer an innovative approach for designing simple and efficient photocatalytic materials composed of MXene co-catalysts and TiO2 for efficient water electrolysis on semiconductors.
Funder
Southwest Jiaotong University large instruments and equipment open test fund
Fundamental Research Funds for the Central Universities
Sichuan Science and Technology program
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献