Abstract
Abstract
Development of electrocatalysts with extended homogeneity and improved metal–support interactions is of urgent scientific need in the context of electrochemical energy applications. Herein, bimetallic Pt–Pd nanoparticles with good homogeneity are fabricated using a convenient solution phase chemical reduction method onto a reduced graphene oxide (rGO) support. X-ray diffraction studies revealed that Pt–Pd/rGO possesses the crystallite size of 3.1 nm. The efficacies of Pt–Pd/rGO catalyst (20 wt% Pt + 10 wt% Pd on rGO support, Pt:Pd atomic ratio = 1:1) towards ethanol electrooxidation reaction (EOR) are evaluated in acidic conditions by cyclic voltammetry using catalyst-coated glassy carbon electrode as a working electrode. With the better dispersion on rGO support the Pt–Pd/rGO nancomposite catalyst exhibit highest mass specific activity (0.358 mA/µg-Pt) which is observed to be 1.9 times of similarly synthesized 20 wt% Pt/rGO (0.189 mA/µg-Pt) and 2.5 times of commercial 20 wt% Pt/C (0.142 mA/µg-Pt), respectively. Apart from the observed improved EOR activity, the Pt–Pd/rGO catalyst exhibited better stability than Pt/rGO and Pt/C catalysts. Strong synergy offered by Pt, Pd and rGO support could contribute to the observed higher EOR activity of Pt–Pd/rGO.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献