Abstract
Abstract
Excessive thiram residues in food have the potential to negatively impact human health. Hence, the development of a convenient and fast detection method is highly desirable. In this study, an efficient, repeatable, and sensitive surface-enhanced Raman scattering (SERS) active chip was manufactured via a low-cost colloidal lithography technique. The plasmonic structure was composed of a series of silver nanospheres and nanowires. Interestingly, this type structure creates a nanocavity space with a characteristic geometry generating a strong electromagnetic field coupling. The finite-different time-domain software was employed to simulate the electromagnetic field distribute on the nanocavity. Accordingly, SERS active chip that displays ultra-low concentration detection of thiram (10−11 M) was realized. Moreover, the excellent reproducibility of thiram (10−6 M) practical detection on an apple pericarp has great potential for application in food safety.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献