Charge-to-spin conversion in fully epitaxial Ru/Cu hybrid nanolayers with interface control

Author:

Song JieyuanORCID,He Cong,Scheike ThomasORCID,Wen ZhenchaoORCID,Sukegawa HiroakiORCID,Ohkubo Tadakatsu,Nozaki YukioORCID,Mitani SeijiORCID

Abstract

Abstract The demonstration of the charge-to-spin conversion, especially with enhanced spin Hall conductivity, is crucial for the development of energy-efficient spintronic devices such as spin–orbit torque (SOT) based magnetoresistive random access memories. In this work, fully epitaxial Ru/Cu heterostructures were fabricated with interface engineering and nanolayer insertions consisting of Cu (1 nm)/Ru (1 nm) structures with different numbers of periods. The atomically controlled interface was confirmed by the high-resolution high-angle annular dark-field scanning transmission electron microscopy, and the epitaxial relationship persists even in the hybrid nanolayer insertion structures. The spin current generation was detected by the measurement of unidirectional spin Hall magnetoresistance, and the effective damping-like spin Hall efficiency (ξ DL) was further quantitatively evaluated by the spin-torque ferromagnetic resonance with thickness dependence of the ferromagnetic layer. It is found that the sharp interface Ru/Cu film has a sizeable ξ DL of −2.2% and the insertion of Cu/Ru nanolayers at the interface can increase the ξ DL value to −3.7%. The former could be attributed to the interface spin–orbit filtering effect and the latter may be further understood by the intrinsic contribution from the local electronic structure tuning due to the lattice distortion near the interface. A large effective spin Hall conductivity is achieved to be (3∼5) × 105 2 e Ω−1 m−1 in the epitaxial Ru/Cu hybrid nanolayers, which is in the same range as that of platinum. This work indicates that the interfacial control with hybrid nanolayer structures can extend the SOT-based materials to highly conductive metals, even with weak spin–orbit interactions, toward high stability, low cost, and low energy consumption for spintronic applications.

Funder

Core Research for Evolutional Science and Technology

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3