Highly stable Pt–Co bimetallic catalysts prepared by atomic layer deposition for selective hydrogenation of cinnamaldehyde

Author:

Wang Kaiying,He Xiaoqing,Wang Jee-Ching,Liang XinhuaORCID

Abstract

Abstract Pt–Co bimetallic catalysts were deposited on γ-Al2O3 nanoparticles by atomic layer deposition (ALD) and were used for selective hydrogenation of cinnamaldehyde (CAL) to cinnamyl alcohol (COL). High resolution transmission electron microscopy, hydrogen temperature‐programmed reduction, x-ray diffraction, and x-ray photoelectron spectroscopy were used to identify the strong interaction between Pt and Co. The obtained catalysts with an optimal Pt/Co ratio achieved a COL selectivity of 81.2% with a CAL conversion of 95.2% under mild conditions (i.e., 10 bar H2 and 80 °C). During the CAL hydrogenation, the addition of Co on Pt significantly improved the activity and selectivity due to the synergetic effects of Pt–Co bimetallic catalysts, resulted from the transfer of electrons from Co to Pt, which can stabilize the carbonyl groups. The obtained Pt–Co bimetallic catalysts also showed excellent stability due to the strong interaction between the metal nanoparticles and the alumina support. Negligible losses in the activity and selectivity were observed during the recycling experiments, showing the potential for practical applications.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3