Formation and characterization of Group IV semiconductor nanowires

Author:

Fukata NaokiORCID,Jevasuwan WipakornORCID

Abstract

Abstract To enable the application to next-generation devices of semiconductor nanowires (NWs), it is important to control their formation and tune their functionality by doping and the use of heterojunctions. In this paper, we introduce formation and the characterization methods of nanowires, focusing on our research results. We describe a top-down method of controlling the size and alignment of nanowires that shows advantages over bottom-up growth methods. The latter technique causes damage to the nanowire surfaces, requiring defect removal after the NW formation process. We show various methods of evaluating the bonding state and electrical activity of impurities in NWs. If an impurity is doped in a NW, mobility decreases due to the scattering that it causes. As a strategy for solving this problem, we describe research into core–shell nanowires, in which Si and Ge heterojunctions are formed in the diameter direction inside the NW. This structure can separate the impurity-doped region from the carrier transport region, promising as a channel for the new ultimate high-mobility transistor.

Funder

MEXT, Japan

JSPS

The Murata Science Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3