Abstract
Abstract
The stability of functional carriers single-atom catalysts can be effectively guaranteed by using stable mineral materials to support low dimensional catalytic materials. In this paper, the theoretical calculation of electrochemical hydrogen evolution reaction (HER) of the composite functional single-atom catalysts supported by single-atom Ni was carried out using first-principles method. And the original structure of MoS2, amorphous structure and S-vacancy structure are studied. Through the analysis and discussion of electronic properties, adsorption energy and active sites, it is found that Ni@Amorphous MoS2-FeS has excellent effect of hydrogen evolution in acidic environment, ΔG
H is 0.312 eV, and the other two structures supporting Ni single-atom also have excellent HER properties in a wide range of pH. This design broadens the research idea of single-atom catalysts carriers and provides a new direction for the research and development of electrocatalytic materials.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献