Abstract
Abstract
While the electrical models of the membrane-based solid-state nanopores have been well established, silicon-based pyramidal nanopores cannot apply these models due to two distinctive features. One is its 35.3° half cone angle, which brings additional resistance to the moving ions inside the nanopore. The other is its rectangular entrance, which makes calculating the access conductance challenging. Here, we proposed and validated an effective transport model (ETM) for silicon-based pyramidal nanopores by introducing effective conductivity. The impact of half cone angle can be described equivalently using a reduced diffusion coefficient (effective diffusion coefficient). Because the decrease of diffusion coefficient results in a smaller conductivity, effective conductivity is used for the calculation of bulk conductance in ETM. In the classical model, intrinsic conductivity is used. We used the top-down fabrication method for generating the pyramidal silicon nanopores to test the proposed model. Compared with the large error (≥25% in most cases) when using the classical model, the error of ETM in predicting conductance is less than 15%. We also found that the ETM is applicable when the ratio of excess ion concentration and bulk ion concentration is smaller than 0.2. At last, it is proved that ETM can estimate the tip size of pyramidal silicon nanopore. We believe the ETM would provide an improved method for evaluating the pyramidal silicon nanopores.
Funder
National Science Foundation
Natural Science Foundation of Beijing Municipality
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献