Properties and applications of boron nitride nanotubes

Author:

Turhan Emine AyşeORCID,Pazarçeviren Ahmet EnginORCID,Evis ZaferORCID,Tezcaner AyşenORCID

Abstract

Abstract Nanomaterials have received increasing attention due to their controllable physical and chemical properties and their improved performance over their bulk structures during the last years. Carbon nanostructures are one of the most widely searched materials for use in different applications ranging from electronic to biomedical because of their exceptional physical and chemical properties. However, BN nanostructures surpassed the attention of the carbon-based nanostructure because of their enhanced thermal and chemical stabilities in addition to structural similarity with the carbon nanomaterials. Among these nanostructures, one dimensional-BN nanostructures are on the verge of development as new materials to fulfill some necessities for different application areas based on their excellent and unique properties including their tunable surface and bandgap, electronic, optical, mechanical, thermal, and chemical stability. Synthesis of high-quality boron nitride nanotubes (BNNTs) in large quantities with novel techniques provided greater access, and increased their potential use in nanocomposites, biomedical fields, and nanodevices as well as hydrogen uptake applications. In this review, properties and applications of one-dimensional BN (1D) nanotubes, nanofibers, and nanorods in hydrogen uptake, biomedical field, and nanodevices are discussed in depth. Additionally, research on native and modified forms of BNNTs and also their composites with different materials to further improve electronic, optical, structural, mechanical, chemical, and biological properties are also reviewed. BNNTs find many applications in different areas, however, they still need to be further studied for improving the synthesis methods and finding new possible future applications.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3