The accelerated design of the nanoantenna arrays by deep learning

Author:

Ma LanORCID,Wang ShulongORCID,Li Yuhang,Wang Guosheng,Duan Xiaoling

Abstract

Abstract Nanoantenna fusion photonics and nanotechnology can manipulate light through the ultra-thin structure composed of sub-wavelength antennas, and meet the important requirements for miniaturized optical components, completely changing the field of optics. However, the device design process is still time-consuming and consumes computing resources. Besides, the professional knowledge requirements of engineers are also high. Relying on the algorithm’s inference ability and excellent computing ability, artificial intelligence has great potential in the fields of material design, material screening, and device performance prediction. However, the deep learning (DL) requires a mass of data. Therefore, this article proposes a method for the forward and inverse design of nanoantenna based on DL. Compared with the previous work, the network uses a two-dimensional matrix as input, which has a simple structure and is more suitable for the advantages of deep netural network. Simultaneously, the small datasets can be used to achieve higher accuracy. In the forward prediction, 100% of the data error is less than 0.007; in the inverse prediction, the data with error less than 0.05 accounted for 90%, 99.8% and 100% of the length, height, and width’s datasets. It demonstrates that the method can improve the automation of the design process and reduce the consumption of computer resources.

Funder

Natural Science Basic Research Program in Shaanxi Province

National Natural Science Foundation of China

Key Research and Development program in Shaanxi Province

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inverse design of electromagnetically induced transparency (EIT) metamaterials based on autoencoder with reconstruction error;2023 IEEE 4th China International Youth Conference On Electrical Engineering (CIYCEE);2023-12-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3