Abstract
Abstract
Two-dimensional nanolayers have found increasingly widespread applications in modern flexible electronic devices. Their adhesion with neighbouring layers can significantly affect the mechanical stability and the reliability of those devices. However, the measurement of such adhesion has been a great challenge. In this work, we develop a new and simple methodology to measure the interfacial adhesion between a mica nanolayer (MNL) and a single-layer graphene (SLG) supported by a SiO2 substrate. The method is based on the well-known Obreimoff method but integrated with innovative nanomanipulation and profile measuring approaches. Our study shows that the adhesion energy of MNLs on the SLG/SiO2 substrate system is considerably lower than that on the SiO2 substrate alone. Quantitative analyses reveal that the wrinkles formed on the SLG can considerably lower the adhesion. This outcome is of technological value as the adhesion maybe tailored by controlling the wrinkle formation in the graphene layer in a flexible electronic device.
Funder
Australian Research Council
National Natural Science Foundation of China
Hunan Provincial Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献