Abstract
Abstract
In order to overcome the drawbacks of Fe3O4 composite samples and greatly increase their performance in microwave absorption, magnetic Fe3O4 spindles coated with dielectric SnO2 nanorods and MnO2 nanoflakes have been successfully synthesized by a four-step simple hydrothermal route. This rationally designed magneto-dielectric ternary nanocomposite will introduce multiple reflection and conductive losses caused by its special multilayer structure and the effective complementarity of dielectric loss and magnetic loss. Therefore, its absorbing performance can be greatly improved. It is notable that the as-prepared Fe3O4@SnO2@MnO2 nanocomposites show a minimum reflection loss value of −50.40 dB at 17.92 GHz at a thickness of 3.9 mm and the absorption bandwidth ranges from 3.62 to 12.08 GHz. The as-prepared Fe3O4@SnO2@MnO2 ternary nanocomposite is expected to be a potential candidate for high-performance microwave-absorbing materials with intensive electromagnetic wave absorption and wide effective absorbing bandwidth.
Funder
Aeronautical Science Foundation of China
Fundamental Research Funds for the Center Universities
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献