Abstract
Abstract
Carbon nanomaterials have become a promising anode material for potassium-ion batteries (KIBs) due to their abundant resources, low cost, and excellent conductivity. However, among carbon materials, the sluggish reaction kinetics and inferior cycle life severely restrict their commercial development as KIBs anodes. It is still a huge challenge to develop carbon materials with various structural advantages and ideal electrochemical properties. Therefore, it is imperative to find a carbon material with heteroatom doping and suitable nanostructure to achieve excellent electrochemical performance. Benefiting from a Na2SO4 template-assisted method and KOH activation process, the KOH activated nitrogen and oxygen co-doped tubular carbon (KNOCTC) material with a porous structure exhibits an impressive reversible capacity of 343 mAh g−1 at 50 mA g−1 and an improved cyclability of 137 mAh g−1 at 2 A g−1 after 3000 cycles with almost no capacity decay. The kinetic analysis indicates that the storage mechanism in KNOCTC is attributed to the pseudocapacitive process during cycling. Furthermore, the new synthesis route of KNOCTC provides a new opportunity to explore carbon-based potassium storage anode materials with high capacity and cycling performance.
Funder
National Natural Science Foundation of China
Sino-German Center for Research Promotion
German Research Foundation
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献