Electrical characterization of tumor-derived exosomes by conductive atomic force microscopy

Author:

Zhang Yu,Ju Tuoyu,Gao Mingyan,Song Zhengxun,Xu Hongmei,Wang ZuobinORCID,Wang Ying

Abstract

Abstract The physical properties of tumor-derived exosomes have gained much attention because they are helpful to better understand the exosomes in biomedicine. In this study, the conductive atomic force microscopy (C-AFM) was employed to perform the electrical characterizations of exosomes, and it obtained the topography and current images of samples simultaneously. The exosomes were absorbed onto the mica substrates coated with a gold film of 20 nm thick for obtaining the current images of samples by C-AFM in air. The results showed that the single exosomes had the weak conductivity. Furthermore, the currents on exosomes were measured at different bias voltages and pH conditions. It illustrated that the conductivity of exosomes was affected by external factors such as bias voltages and solutions with different pH values. In addition, the electrical responses of low and high metastatic potential cell-derived exosomes were also compared under different voltages and pH conditions. This work is important for better understanding the physical properties of tumor-derived exosomes and promoting the clinical applications of tumor-derived exosomes.

Funder

“111” Project of China

National Key R&D Program of China

National Natural Science Foundation Program of China

Jilin Provincial Science and Technology Program

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3