Nanostructured transition-metal phthalocyanine complexes for catalytic oxygen reduction reaction

Author:

Chen Siyu,Xu ZhanweiORCID,Li Jiayin,Yang Jun,Shen Xuetao,Zhang Ziwei,Li Hongkui,Li Wenyang,Li Zhi

Abstract

Abstract Oxygen reduction reaction (ORR) plays a key role in the field of fuel cells. Efficient electrocatalysts for the ORR are important for fuel cells commercialization. Pt and its alloys are main active materials for ORR. However, their high cost and susceptibility to time-dependent drift hinders their applicability. Satisfactory catalytic activity of nanostructured transition metal phthalocyanine complexes (MPc) in ORR through the occurrence of molecular catalysis on the surface of MPc indicates their potential as a replacement material for precious-metal catalysts. Problems of MPc are analyzed on the basis of chemical structure and microstructure characteristics used in oxygen reduction catalysis, and the strategy for controlling the structure of MPc is proposed to improve the catalytic performance of ORR in this review.

Funder

Shaanxi Natural Science Foundation of China

Academic Team funding of Shaanxi University of Science and Technology

Provincial Key Academic Leaders Scientific Research Foundation of Shaanxi University of Science and Technology

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3