Evaluation of mechanical properties of triple-junction-free polycrystalline graphene

Author:

Heo Jeonghyeon,Han JihoonORCID

Abstract

Abstract Although chemical vapor deposition (CVD) has emerged as an important method for producing large-scale and relatively high-quality graphene, CVD-grown graphene inherently contains grain boundaries (GBs), which degrade its mechanical properties. To compensate for these characteristics, various studies have been conducted to maintain the mechanically superior properties by controlling the density of defects and GBs. In this study, the mechanical properties of triple junction (TJ)-free polycrystalline graphene, which is expected to exhibit excellent properties, were investigated through molecular dynamics simulations because TJ is well-known as a crack nucleation site due to stress concentration. We adopted the phase-field crystal method to model CVD-grown graphene-containing TJ-free polycrystalline materials. From a series of numerical simulations, we found that the fracture strength increases as the density of the GB increases. This trend is consistent with that presented in a previous experimental study measured by nanoindentation. It was determined that the variation in the fracture strength is related to the discontinuous density of 5–7 pairs, which act as stress-concentration sites. Additionally, we observed that the fracture strength was higher than that of polycrystalline graphene with TJ. We believe that these results have a higher mechanical advantage compared to the low strength of TJs shown in previous studies and will be important for future structural reliability-based graphene applications.

Funder

Korea Institute of Energy Technology Evaluation and Plannin

National Research Foundation of Korea

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3