Influence of binder and solvents on the electrochemical performance of screen-printed MXene electrodes

Author:

Chavan Rutuja AORCID,Ghule Anil VithalORCID

Abstract

Abstract The present study is concerned with the use of binders and solvents in fabricating MXene electrodes, which play a vital role in influencing supercapacitive performance. The electrodes were prepared by screen printing MXene on flexible stainless steel mesh (FSSM) substrate, which is a straightforward, efficient, and cost-effective approach. The influence of binder and solvent on the electrochemical performance was investigated by fabricating them with and without using a binder i.e. only organic solvents ethanol and n-methyl-2-pyrrolidone (NMP). The electrode with the binder is abbreviated as MX-B@FSSM and was prepared with the composition of acetylene black conducting material, polyvinylidene fluoride (PVDF) polymer binder, and MXene (MX) as active material. While electrodes without binder were prepared by a slurry of MXene using organic solvent ethanol and NMP and are abbreviated as MX-E@FSSM and MX-N@FSSM, respectively. The electrochemical performance of these MX-B@FSSM, MX-E@FSSM and MX-N@FSSM electrodes was examined by cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy. The influence of the binder altered the electrochemical performance. The samples MX-B@FSSM, MX-E@FSSM, and MX-N@FSSM show the specific capacitance of 35.60, 490.80, and 339.6 F g−1, respectively at 2 mA cm−2 current density. The MX-E@FSSM electrode exhibited marginally the best electrochemical performance. Furthermore, MnO2/MXene//MX-E asymmetric supercapacitor device exhibits 252 F g−1 specific capacitance at 35.2 Wh kg−1 energy density demonstrating a promising electrode for the supercapacitor.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3