Enhancing modulation performance by design of hybrid plasmonic optical modulator integrating multi-layer graphene and TiO2 on silicon waveguides

Author:

Supasai WisutORCID,Siritaratiwat Apirat,Srichan ChavisORCID,Suwanarat SuksanORCID,Amorntep Narong,Wannaprapa MongkolORCID,Jutong NuttachaiORCID,Chaisakul Papichaya,Wiangwiset ThalerngsakORCID,Narkglom SorawitORCID,Keokhoungning Thongsavanh,Surawanitkun ChayadaORCID

Abstract

Abstract A novel way to enhance modulation performance is through the design of a hybrid plasmonic optical modulator that integrates multi-layer graphene and TiO2 on silicon waveguides. In this article, a design is presented of a proposed modulator based on the use of the two-dimensional finite difference eigenmode solver, the three-dimensional eigenmode expansion solver, and the CHARGE solver. Leveraging inherent graphene properties and utilizing the subwavelength confinement capabilities of hybrid plasmonic waveguides (HPWs), we achieved a modulator design that is both compact and highly efficient. The electrical bandwidth f 3dB is at 460.42 GHz and it reduces energy consumption to 12.17 fJ/bit with a modulator that functions at a wavelength of 1.55 μm. According to our simulation results, our innovation was the optimization of the third dielectric layer’s thickness, setting the stage to achieve greater modulation depths. This synergy between graphene and HPWs not only augments subwavelength confinement, but also optimizes light–graphene interaction, culminating in a markedly enhanced modulation efficiency. As a result, our modulator presents a high extinction ratio and minimized insertion loss. Furthermore, it exhibits polarization insensitivity and a greater bandwidth. Our work sets a new benchmark in optical communication systems, emphasizing the potential for the next generation of chip-scale with high-efficiency optical modulators that significantly outpace conventional graphene-based designs.

Funder

Network Talent (MINT Center), Faculty of Interdisciplinary Studies, Electrical and Computer Engineering, Khon Kaen University, Thailand

Department of Physics, Faculty of Science, Kasetsart University, Thailand

Kasetsart University Research and Development Institute

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3