Piezoelectric potential enhanced photocatalytic performance based on ZnO with different nanostructures

Author:

Yu Cheng,Yu Xiang-XiangORCID,Zheng Ding-Shan,Yin Hong

Abstract

Abstract In this paper, two novel nanostructures with ZnO nanowire and nanosheet arrays vertically growing on the FTO and Al foil have been synthesized by a hydrothermal method, which exhibit both the piezoelectric and photocatalytic properties. These nanostructures have typical wurtzite structures based on the XRD results. From the SEM results, the average diameter and length of nanowire have been measured to be about 150 nm and 4.5 μm, the thickness of ZnO nanosheet is about 50 nm and the width is about 5 μm. In the photocatalytic test, the photodegradation of RhB under 365 nm illumination for nanowire and nanosheet is about 25% and 37% in 80 min reaction. With stirring, the degradation rate is increased to 61% and 85%. Finally, the photocurrent test and finite element method were used to analyze the piezo-photodegradation mechanism.

Funder

Hubei Education Department Science and Technology Research Project

Hubei Province Natural Science Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3