Densification effect on field emission characteristics of CNT film emitters for electron emission devices

Author:

Han Si EunORCID,Go HanbinORCID,Lee Hyunjea,Lee Cheol JinORCID

Abstract

Abstract Field electron emission characteristics of the carbon nanotube (CNT) film emitters were investigated according to densification conditions such as nitric acid, acetic acid, and salicylic acid. The emission performance of the CNT film emitters was strongly affected by the densification conditions. Salicylic acid exhibits the best field electron emission properties of the CNT film emitters, followed by nitric acid and acetic acid. The efficient densification of the CNT film emitter by salicylic acid is caused by the role of polarity and p orbitals, nitric acid by hydrogen ions, and acetic acid by weak polarity. After the densification with salicylic acid, the turn-on field of the CNT film emitter decreases from 1.94 V μm−1 to 1.86 V μm−1, the threshold field decreases from 3.41 V μm−1 to 2.95 V μm−1, the emission current significantly increases from 20.92 mA to 43.98 mA, and the degradation rate from the long-term emission stability decreases from 49.9% to 21%. The improved emission characteristics are attributed to the increased emission sites at the CNT film and the increased electrical conductivity of the CNT film. The densification is a useful way to enhance the field electron emission properties of CNT film emitters.

Funder

Brain Korea 21

Korean government

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3