Abstract
Abstract
Abstract: Chemisorbed oxygen acts a crucial role in the redox reaction of semiconductor gas sensors, and which is of great significance for improving gas sensing performance. In this study, an oxygen-plasma-assisted technology is presented to enhance the chemisorbed oxygen for improving the formaldehyde sensing performance of SnO2 electropun fiber. An inductively coupled plasma device was used for oxygen plasma treatment of SnO2 electrospun fibers. The surface of SnO2 electrospun fibers was bombarded with high-energy oxygen plasma for facilitating the chemisorption of electronegative oxygen molecules on the SnO2 (110) surface to obtain an oxygen-rich structure. Oxygen-plasma-assisted SnO2 electrospun fibers exhibited excellent formaldehyde sensing performance. The formaldehyde adsorption mechanism of oxygen-rich SnO2 was investigated using density functional theory. After oxygen plasma modification, the adsorption energy and the charge transfer number of formaldehyde to SnO2 were increased significantly. And an unoccupied electronic state appeared in the SnO2 band structure, which could enhance the formaldehyde adsorption ability of SnO2. The gas sensing test revealed that plasma-treated SnO2 electrospun fibers exhibited excellent gas sensing properties to formaldehyde, low operating temperature, high response sensitivity, and considerable cross-selectivity. Thus, plasma modification is a simple and effective method to improve the gas sensing performance of sensors.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Liaoning Province
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献