Abstract
Abstract
We experimentally demonstrate the transmission of electrons through different number (1, 2, and 5) of suspended graphene layers at electron energies between 20 and 250 eV. Electrons with initial energies lower than 40 eV are generated using silicon field emitter arrays with 1 μm pitch, and accelerated towards the graphene layers supported by a silicon nitride grid biased at voltages from −20 to 200 V. We measured significant increase in current collected at the anode with the presence of graphene, which is attributed to the possible generation of secondary electrons by primary electrons impinging on the graphene membrane. Highest output current was recorded with monolayer graphene at approximately 90 eV, with up to 1.7 times the incident current. The transparency of graphene to low-energy electrons and its impermeability to gas molecules could enable low-voltage field emission electron sources, which often require ultra-high vacuum, to operate in a relatively poor vacuum environment.
Funder
Defense Advanced Research Projects Agency
Air Force Office of Scientific Research
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献