Fabrication of fluorescent composite hydrogel using in situ synthesis of upconversion nanoparticles

Author:

Dong Yuqing,Lin Min,Jin Guorui,Il Park Yong,Qiu Mushu,Zhao Ying,Yang Hui,Li Ang,Jian Lu Tian

Abstract

Abstract Fluorescent composite hydrogels have found widespread applications, especially in spatial and temporal monitoring of in vivo hydrogel behaviors via the emitting optical signal. However, most existing fluorescent composite hydrogels suffer from limited capability of deep tissue imaging and complicated fabrication routes. We herein report a facile method for fabricating fluorescent composite hydrogels based on the in situ synthesis of NaYF4:Yb, Er upconversion nanoparticles (UCNPs). This approach employs polyacrylamide (PAAm) hydrogels as a template, where the interconnected pores within the hydrogel act as nanoreactors to confine the growth of nanocrystals. We then obtained a fluorescent composite hydrogel exhibiting upconversion fluorescence and enhanced mechanical properties. The fluorescence spectra show that the fluorescence intensity decreases with decreasing size of the UCNPs. We investigated the relationship between the optical properties of the fluorescent composite hydrogel and the incorporated UCNPs based on the morphology, size, and distribution of the UCNPs by using scanning electron microscopy and transmission electron microscopy. In addition, we demonstrated the applicability of the synthesized hydrogel for deep tissue imaging through an in vitro tissue penetration experiment. Compressive and dynamic rheological testing reveal enhanced mechanical properties with increasing UCNP concentration. The fabricated upconversion fluorescent composite hydrogel may pave the way for monitoring the in vivo behavior of biomimetic materials via deep tissue imaging.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3