Photoelectrochemical oxygen evolution with interdigitated array electrodes: the example of TiO2

Author:

Liu FeiORCID,Tao Keyu,Peiqi Du,Shi JinwenORCID

Abstract

Abstract The catalytic reactions of photoelectrochemical water splitting attracts tremendous attention as a promising strategy for clean energy production. And the research on reaction mechanism is particularly important in design and developing new catalysts. In this work, the special electrochemical tool of interdigitated array (IDA) electrodes was utilized in investigating the photoelectrochemical oxygen evolution reaction process and detecting the reaction product in situ with the generation-collection mode. TiO2 was taken as a model catalyst and was decorated onto the IDA generator electrode through an electrophoresis method, so that the photoelectrochemical water splitting can take place on the IDA generator and the reaction product can be detected directly with the IDA collector in real time. It is found that TiO2 can be successfully decorated onto the surface of IDA electrode with the expected photoelectrochemical activity, and the generation-collection mode reveals and distinguishes the production of O2 from the overall photoelectrochemical current on TiO2 generator. The mass transfer process of O2 from the TiO2 generator to the collector could be observed as well. Large overall current at high potential range indicates the possible increasing production of the byproducts or nonfaradaic current.

Funder

State Key Laboratory of Multiphase Flow in Power Engineering and the Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3