Au-on-Ag nanostructure for in-situ SERS monitoring of catalytic reactions

Author:

He ShuyueORCID,Wu Di,Chen Siwei,Liu KaiORCID,Yang Eui-HyeokORCID,Tian Fei,Du Henry

Abstract

Abstract Dual-functionality Au-on-Ag nanostructures (AOA) were fabricated on a silicon substrate by first immobilizing citrate-reduced Ag nanoparticles (Ag NPs, ∼43 nm in diameter), followed by depositing ∼7 nm Au nanofilms (Au NFs) via thermal evaporation. Au NFs were introduced for their catalytic activity in concave-convex nano-configuration. Ag NPs underneath were used for their significant enhancement factor (EF) in surface-enhanced Raman scattering (SERS)-based measurements of analytes of interest. Rhodamine 6G (R6G) was utilized as the Raman-probe to evaluate the SERS sensitivity of AOA. The SERS EF of AOA is ∼37 times than that of Au NPs. Using reduction of 4-nitrothiophenol (4-NTP) by sodium borohydride (NaBH4) as a model reaction, we demonstrated the robust catalytic activity of AOA as well as its capacity to continuously monitor via SERS the disappearance of reactant 4-NTP, emergence and disappearance of intermediate 4,4′-DMAB, and the appearance of product 4-ATP throughout the reduction process in real-time and in situ.

Funder

American Chemical Society Petroleum Research Fund

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3