Abstract
Abstract
Dual-functionality Au-on-Ag nanostructures (AOA) were fabricated on a silicon substrate by first immobilizing citrate-reduced Ag nanoparticles (Ag NPs, ∼43 nm in diameter), followed by depositing ∼7 nm Au nanofilms (Au NFs) via thermal evaporation. Au NFs were introduced for their catalytic activity in concave-convex nano-configuration. Ag NPs underneath were used for their significant enhancement factor (EF) in surface-enhanced Raman scattering (SERS)-based measurements of analytes of interest. Rhodamine 6G (R6G) was utilized as the Raman-probe to evaluate the SERS sensitivity of AOA. The SERS EF of AOA is ∼37 times than that of Au NPs. Using reduction of 4-nitrothiophenol (4-NTP) by sodium borohydride (NaBH4) as a model reaction, we demonstrated the robust catalytic activity of AOA as well as its capacity to continuously monitor via SERS the disappearance of reactant 4-NTP, emergence and disappearance of intermediate 4,4′-DMAB, and the appearance of product 4-ATP throughout the reduction process in real-time and in situ.
Funder
American Chemical Society Petroleum Research Fund
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献