Nanoporous GaN by selective area sublimation through an epitaxial nanomask: AlN versus Si x N y

Author:

Damilano BORCID,Vézian S,Brault J,Ruterana PORCID,Gil BORCID,Tchernycheva M

Abstract

Abstract Nanoporous GaN layers were fabricated using selective area sublimation through a self-organized AlN nanomask in a molecular beam epitaxy reactor. The obtained pore morphology, density and size were measured using plan-view and cross-section scanning electron microscopy experiments. It was found that the porosity of the GaN layers could be adjusted from 0.04 to 0.9 by changing the AlN nanomask thickness and sublimation conditions. The room temperature photoluminescence properties as a function of the porosity were analysed. In particular, a strong improvement (>100) of the room temperature photoluminescence intensity was observed for porous GaN layers with a porosity in the 0.4–0.65 range. The characteristics of these porous layers were compared to those obtained with a Si x N y nanomask. Furthermore, the regrowth of p-type GaN on light emitting diode structures made porous by using either an AlN or a Si x N y nanomask were compared.

Funder

Agence Nationale de la Recherche

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3