Abstract
Abstract
Germanium (Ge) is a vital element for applications that operate in near-infrared wavelengths. Recent progress in developing nanostructured Ge surfaces has resulted in >99% absorption in a wide wavelength range (300–1700 nm), promising unprecedented performance for optoelectronic devices. However, excellent optics alone is not enough for most of the devices (e.g. PIN photodiodes and solar cells) but efficient surface passivation is also essential. In this work, we tackle this challenge by applying extensive surface and interface characterization including transmission electron microscopy and x-ray photoelectron spectroscopy, which reveals the limiting factors for surface recombination velocity (SRV) of the nanostructures. With the help of the obtained results, we develop a surface passivation scheme consisting of atomic-layer-deposited aluminum oxide and sequential chemical treatment. We achieve SRV as low as 30 cm s−1 combined with ∼1% reflectance all the way from ultraviolet to NIR. Finally, we discuss the impact of the achieved results on the performance of Ge-based optoelectronic applications, such as photodetectors and thermophotovoltaic cells.
Funder
Finnish research impact foundation
European Union Horizon 2020 research and innovation programme
European Commission
Academy of Finland
Business Finland
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献