Efficient surface passivation of germanium nanostructures with 1% reflectance

Author:

Fung Tsun HangORCID,Isometsä JoonasORCID,Lehtiö Juha-PekkaORCID,Pasanen Toni PORCID,Liu HanchenORCID,Leiviskä OskariORCID,Laukkanen PekkaORCID,Savin HeleORCID,Vähänissi VilleORCID

Abstract

Abstract Germanium (Ge) is a vital element for applications that operate in near-infrared wavelengths. Recent progress in developing nanostructured Ge surfaces has resulted in >99% absorption in a wide wavelength range (300–1700 nm), promising unprecedented performance for optoelectronic devices. However, excellent optics alone is not enough for most of the devices (e.g. PIN photodiodes and solar cells) but efficient surface passivation is also essential. In this work, we tackle this challenge by applying extensive surface and interface characterization including transmission electron microscopy and x-ray photoelectron spectroscopy, which reveals the limiting factors for surface recombination velocity (SRV) of the nanostructures. With the help of the obtained results, we develop a surface passivation scheme consisting of atomic-layer-deposited aluminum oxide and sequential chemical treatment. We achieve SRV as low as 30 cm s−1 combined with ∼1% reflectance all the way from ultraviolet to NIR. Finally, we discuss the impact of the achieved results on the performance of Ge-based optoelectronic applications, such as photodetectors and thermophotovoltaic cells.

Funder

Finnish research impact foundation

European Union Horizon 2020 research and innovation programme

European Commission

Academy of Finland

Business Finland

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Reference49 articles.

1. Achieving direct band gap in germanium through integration of Sn alloying and external strain;Gupta;J. Appl. Phys.,2013

2. Direct-bandgap emission from hexagonal Ge and SiGe alloys;Fadaly;Nature,2020

3. Toward a germanium laser for integrated silicon photonics;Sun;IEEE J. Sel. Top. Quantum Electron.,2010

4. The last silicon transistor;Ye;IEEE Spectr.,2019

5. Cost-efficient thermophotovoltaic cells based on germanium substrates;van der Heide;Sol. Energy Mater. Sol. Cells,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3