Dielectric modulation strategy of carbon nanotube field effect transistors based pressure sensor: towards precise monitoring of human pulse

Author:

Wu SiminORCID,Liu Yuxuan,Tang YuqianORCID,Jiang Xijun,Liu Lingguang,Liu Xiaofeng,Cao Juexian,Liu Yiwei

Abstract

Abstract Continuous monitoring of arterial pulse has great significance for detecting the early onset of cardiovascular disease and assessing health status, while needs pressure sensors with high sensitivity and signal-to-noise ratio (SNR) to accurately capture more health information concealed in pulse waves. Field effect transistors (FETs) combined with the piezoelectric film is an ultrahigh sensitive pressure sensor category, especially when the FET works in the subthreshold regime, where the signal enhancement effect on the piezoelectric response is the most effective. However, controlling the work regime of FET needs extra external bias assistance which will interfere with the piezoelectric response signal and complicate the test system thus making the scheme difficult to implement. Here, we described a gate dielectric modulation strategy to match the subthreshold region of the FET with the piezoelectric output voltage without external gate bias, finally enhancing the sensitivity of the pressure sensor. A carbon nanotube field effect transistor and polyvinylidene fluoride (PVDF) together form the pressure sensor with a high sensitivity of 7 × 10−1 kPa−1 for a pressure range of 0.038–0.467 kPa and 6.86 × 10−2 kPa−1 for a pressure range of 0.467–15.5 kPa, SNR, and the ability to continuously monitor pulse in real-time. Additionally, the sensor enables high-resolution detection of weak pulse signals under large static pressure.

Funder

National Natural Science Foundation of China

Hebei Natural Science Foundation

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3