Abstract
Abstract
Hexagonal BCN (h-BCN) is considered to be a promising dielectric ceramic material with a hybrid B–C–N structure and an electromagnetic wave (EMW) absorbing material with tenable properties. H-BCN bulk and microtube architectures are simultaneously synthesized by precursor pyrolysis method using BCl3, aniline (AN) and diethylenetriamine (DETA) as the raw material. By analyzing its electromagnetic parameters, the effective absorption bandwidth of the sample cracking at 900 °C with the proportion of raw materials (DETA:AN = 1:1) can be up to 7.2 GHz, and the minimum reflection loss can reach −43.6 dB at 7.92 GHz with a thickness of 3.5 mm. Moreover, the EMW absorbing property of the ceramic can be tuned by adjusting the ratio of monomers, pyrolysis temperature, and cooling rates.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献