Insight into the capacity decay mechanism of cycled LiNi0.5Co0.2Mn0.3O2 cathodes via in situ x-ray diffraction

Author:

Huang Yalan,Zhu He,Zhu Hekang,Zhang Jian,Ren Yang,Liu QiORCID

Abstract

Abstract Layered LiNi x Co y Mn1-x-y O2 (NCM) is expected to dominate the future cathode technology of the automotive industry, due to its high energy density and low cost. Despite its excellent prospects, however, the severe capacity decay of NCM cathodes has prevented this promising material from achieving further success. The mechanism underlying this phenomenon is controversial and has been generally understood as arising from the complex structural changes that take place upon Li-(de)intercalation. However, deeper insight has not been available due to unclear structural kinetics, in particular, in cycled NCM cathodes. For this study, we conducted in situ high-energy synchrotron x-ray diffraction (XRD) measurements on a typical LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode that had been operated for 90 cycles, then compared the results with those collected from a fresh NCM532 electrode. It was revealed that the H1–H2 phase transition that only occurs at the first cycle is irreversible. Remarkably, the c-contraction triggered by the H2-H3 transition, which is expected to be the major cause of intergranular cracks in electrodes, became even more profound after cycling. Combining the above results with electrochemical testing and microscopic imaging, we discuss the interplay between structural dynamics and performance degradation in NCM532 in detail. This study provides key evidence for a mechanically induced capacity decay mechanism, which is expected to be extended to NCM materials with various compositions.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3