Abstract
Abstract
The integration of graphene (Gr) with nitride semiconductors is highly interesting for applications in high-power/high-frequency electronics and optoelectronics. In this work, we demonstrated the direct growth of Gr on Al0.5Ga0.5N/sapphire templates by propane (C3H8) chemical vapor deposition at a temperature of 1350 °C. After optimization of the C3H8 flow rate, a uniform and conformal Gr coverage was achieved, which proved beneficial to prevent degradation of AlGaN morphology. X-ray photoemission spectroscopy revealed Ga loss and partial oxidation of Al in the near-surface AlGaN region. Such chemical modification of a ∼2 nm thick AlGaN surface region was confirmed by cross-sectional scanning transmission electron microscopy combined with electron energy loss spectroscopy, which also showed the presence of a bilayer of Gr with partial sp2/sp3 hybridization. Raman spectra indicated that the deposited Gr is nanocrystalline (with domain size ∼7 nm) and compressively strained. A Gr sheet resistance of ∼15.8 kΩ sq−1 was evaluated by four-point-probe measurements, consistently with the nanocrystalline nature of these films. Furthermore, nanoscale resolution current mapping by conductive atomic force microscopy indicated local variations of the Gr carrier density at a mesoscopic scale, which can be ascribed to changes in the charge transfer from the substrate due to local oxidation of AlGaN or to the presence of Gr wrinkles.
Funder
Ministero dell’Istruzione, dell’Università e della Ricerca
Agence Nationale de la Recherche
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献