Enhanced photocatalytic activity and antiviral evaluation of CuO@Fe2O3 NC for amoxicillin degradation and SARS-CoV-2 treatment

Author:

Legmairi Souheila,Meneceur Souhaila,Hasan Gamil GamalORCID,Eddine Laouini Salah,Mohammed Hamdi Ali,Alharthi FahadORCID,Abdullah Johar Amin AhmedORCID

Abstract

Abstract Copper oxide nanoparticles (CuO NPs) and CuO NPs decorated with hematite (Fe2O3) nanocomposites (CuO@Fe2O3 NC) were biosynthesized by a green method using Portulaca oleracea leaves extract. The NC were characterized using various techniques, including x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive x-ray spectroscopy, and UV–vis spectroscopy. The results showed that the synthesized CuO and CuO@Fe2O3 NC were crystalline with a monoclinic crystal structure and contained functional groups responsible for catalytic activity. The size of the nanocomposites ranged from 39.5 to 45.9 nm, and they exhibited a variety of agglomerated or aggregated shapes. The CuO@Fe2O3 NC showed improved photocatalytic activity for the degradation of antibiotics in water and wastewater and promising antiviral activity against SARS-CoV-2, indicating its potential for use in disinfection applications. The study investigated the impact of irradiation time on the photocatalytic degradation of Amoxicillin and found that increasing the irradiation time led to a higher degradation rate. The band gap energy (E g) for pure CuO NPs was around 2.4 eV and dropped to 1.6 eV with CuO@Fe2O3 NC. In summary, the CuO@Fe2O3 NC has the potential to be an efficient photocatalyst and promising antiviral agent for environmental remediation. The CuO@Fe2O3 nanocomposites have been found to possess a high degree of efficacy in inactivating SARS-CoV-2 infectivity. The results of the study indicate that the nanocomposites exhibit potent anti-viral properties and hold significant potential for use in mitigating the spread of the virus.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3